The Blow-up Problem for Exponential Nonlinearities

نویسنده

  • SATYANAD KICHENASSAMY
چکیده

We give a solution of the blow-up problem for equation u = e, with data close to constants, in any number of space dimensions: there exists a blow-up surface, near which the solution has logarithmic behavior; its smoothness is estimated in terms of the smoothness of the data. More precisely, we prove that for any solution of u = e with Cauchy data on t = 1 close to (ln 2; 2) in H(R) H (R), s is a large enough integer, must blow-up on a space like hypersurface de ned by an equation t = (x) with 2 H 146 (R). Furthermore, the solution has an asymptotic expansion ln(2=T ) + P j;k ujk(x)T (lnT ), where T = t (x), valid upto order s 151 10[n=2]. Logarithmic terms are absent if and only if the blowup surface has vanishing scalar curvature. The blow-up time can be identi ed with the in mum of the function . Although attention is focused on one equation, the strategy is quite general; it consists in applying the Nash-Moser IFT to a map from \singularity data" to Cauchy data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

BLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM

In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...

متن کامل

To The Memory of My Father ,

This thesis is concerned with the study of the Blow-up phenomena for parabolic problems, which can be defined in a basic way as the inability to continue the solutions up to or after a finite time, the so called blow-up time. Namely, we consider the blow-up location in space and its rate estimates, for special cases of the following types of problems: (i) Dirichlet problems for semilinear equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997